Index

Abiotic
 degradability, 344
 degradation, 108, 351
 in aquatic systems, 122–130
Absorbents, for CO₂-trapping, 156
Absorption coefficient, 96
Abstraction
 of hydrogen, by OH-radicals, 60
 reactions, 58
 rate constants, 61
Accumulation, 2, 151, 235, 335, 337, 344
 balance of rates of uptake and
 clearance, 233
 of chemicals from sediment, laboratory
 test, 151
 of chemicals from water
 formula, 235
 steady state plateau, 235, 236
 potential, 344
Acetaldehyde
 from propene, 70
 photolysis of, 73
 reaction with OH, 73
Acetyl peroxy radical from acetaldehyde, 73

Achromobacter, 221

Acid
 nitric, 16
 precipitation, and soil pH, 173
 rain, 16
 sulfuric, 16

Acinetobacter, 221

Actinic irradiance, 35

Actinometer, 127

Actinomycetes, and biodegradation in
 dry soils, 220

Activated sludge, 225
 degradation in, 185
 semi-continuous test, 227

Activation, indirect, 107

Active oxygen species, 99

Active sites, on earth surface,
 75

Adaptation
 bacterial, 216
 by enzyme induction, 222
 process, temperature dependence of,
 220
 Adaptive enzymes, 215

Additional reactions, 61, 63

Addition/substitution rules, 340

Adiposity, and clearance of chlordane
 from fish, 247

Adsorbing surfaces, effects on
 biodegradation, 147

Adsorption
 coefficient, 290
 constant, 290
 composite, or sediment, 141
 desorption, tests, 289
 isotherms, 94, 311
 of mercury, influence of Cl-ion
 concentration, 142
 of organic substances on the cell
 surface, 217
 of pesticides to dry soil, 175
 redox interaction, laboratory test of,
 149

Aeration profile, of sediment, 144

Aerobacter, 221

Aerobic
 degradation to CO₂, 217
 microorganisms, in sediment, 144

Aerodynamic method, 315

Aerosil, 94, 200

Aerosol
 precursor, 68
 surfaces, 5

Aerosols, 32, 85, 94, 353
 collision efficiency, 32
 collision frequency, 32
 interaction with gaseous compounds,
 46
Aerrosols (cont)
 interaction with radical cycles, 34
 photochemical formation, 46
 primary nuclei, 32
 reaction efficiency, 32
 size distribution, 32
 surface area, 32
Agglomeration, biological, by diatoms, 139
Agricultural chemicals, 336
Agrochemical, usage of soil, 173
Agro-ecosystem, 173, 313, 322
 chamber, 313
Air pollutants
 concentration of, 16
 degradation of, 16
 exposure to, 16
 residence time of, 16
Air–water interface, 296
Aitgen particlers, 32
Albedo, 35
Alcohols, 65
 degradation mechanisms of, 73
Aldehydes, 65, 69, 73
 from photodegradation of organics, 73
 photodissociation of, 73
 photolysis of, 73
 reaction with OH, 73
Aldrin, metabolism of, 197, 198
Alkanes, 65, 69
 in atmosphere, 24
Alkenes, in atmosphere, 24
Alkox radical, 69, 70, 72
Alkyl nitrite, photolysis system, 65
Allylic hydrogens, 69
American woodcock, fed with
 heptachlor-exposed worms, 273, 274
Amines, 66
 degradation mechanisms of, 73
Amino acids, in marine suspended
 particulates, 140
Aminoparathion, dealkylation,
 involvement of hydrogen sulphide,
 146, 157
Amino-triazinones, deamination,
 quantum yield, 90–92
Amphipod, 143
Anaerobic
 degradation to methane, CO₂ and
 water, 217
 periods, in lake sediments, 144
 reaction products, measurements of, 144

Anaerobiosis, 215
Anilines, oxidation to azobenzenes,
 198
Animals, and chemicals in soil, 177
Animal waste, and soil, 174
Anthracene, diffuse reflection on silica
 gel, 96
Anthropogenic material, 335
Aquatic
 ecosystems, 5
 food chain, in model ecosystem, 131
 systems, 120
 abiotic degradation in, 122–130
Aromatic
 amines, oxidation by peroxy radicals,
 129
 chlorinated hydrocarbons,
 dechlorination of, 92, 93
 hydrocarbons, distribution in aquatic
 system, field test, 159
 OH–O₂ adducts, bicyclic, 72
 oxidation systems, 72
 reaction with PH radical, 84
 thiol derivatives, oxidation by peroxy
 radicals, 129
Artificial
 ecosystem, 131
 light sources, for photodegradation
 tests, 127
Asbestos, lung cancer, 15
Assimilation, of pollutants, 271, 282
ASTM method, 113
Atmosphere
 as source of soil contamination, 173
 background, composition of, 23
 breakdown, 108
 energy transport in, 20
 gradients in mixing ratios, 21
 latitudinal mixing in, 21
 longitudinal mixing in, 21
 non-methane hydrocarbons in, 24
 radical producing compounds in, 25
 structure of, 20
 suspended particulates, 93
 vertical temperature distribution, 20,
 22
 vertical transport in, 21
Atmospheric
 aerosols, heterogeneous processes on,
 16
 breakdown, 8
 computer models, 64
 contamination, 307
 by plants, 320
Biodegradability (cont)
of non-ionic ethoxylated surfactants, 224
on anionic surfactants, 224
on cationic surfactants, 225
Porous Pot, 225
Wickbold method, 225
Biodegradation, 4
and chemical structure, 223
causes and mechanisms, 214–218
inhibition of
by bacteriostatic mineral concentrations, 219
by intermediary metabolites, 219
by other substrates, 219
in model ecosystems, 131
in water, 8
laboratory tests, 131
maximum rate, 219
of chemicals, in sediments, 144–148
of lignin or cellulose, 220, 221
tests, 224–228
extrapolation to the environment, 229
Biological
cycles, of elements, 214
response, studies, 345
Biomagnification, 351
contribution to accumulation, 249
definition, 244
and the depuration constant, 249
of sediment-borne chemicals, in aquatic food chains, 154
Biomass
adsorption of pollutants in sewage treatment, 222
increase by mineralization, 195
microbial, 216
Biometer flasks, for CO₂-trapping, 156
Biosynthesis, of persistent products, 196
Biotic
degradation, 351
and adsorption tests, 291
systems, 338
transformation, 351, 355
Biotransformation, 3
in vitro studies, 201, 202
of chemicals in anaerobic sediments, 145
of chemicals in plant–soil systems, laboratory test method, 203, 207
predictability from structural characteristics, 197, 198
total, test methods, 198
vs. mineralization test methods, 199, 200, 204
Bipyridylium herbicides, ion-exchange adsorption in soil, 176
BOD test, 226
Bond angle, 94
Bond length, 94
Borosilicate glass, filter, 109, 127
Bound mineralization products, 207 residues, in soil, bioavailability of, 181
Boundary conditions, 108 layers
air/water, 121
planetary, 24
Boxes, for outdoor plant studies, 318–320
Breakdown, atmospheric, 108
Brevibacterium, 221

Cadmium, 336
in earthworms, 268
uptake through sediment ingestion, 143
Calomel electrode, 146
Cancerogenicity, 345
Carassius auratus, 249
Carbonaceous substrate, bacteriostatic effects of, selection of resistant populations, 222
Carbon dioxide
as mineralization product, 195, 199
atmospheric content, 16
determination as end product of biodegradation, laboratory tests, 152, 155, 156, 224
effect on climate, 16
in atmosphere, 24
mixing ratio, 25
lifetime in troposphere, 25
separation from volatile organics, 156, 199
Carbon monoxide
as photomineralization product, 101
in atmosphere, 24
formation of, 24
lifetime of, 24
Carbon Pool, natural, 195
INDEX

Carbon tetrachloride, 101
Carbonyl compound, 67
Carnivore, 258
Carrot, 317
Catalases, microbial, 215
Catalyst
 substrate interaction, 94
 surface activity, 95
Catalytically, active surface, 95
Catalytic effectiveness, of surfaces, 94
Catalytic effects, 99
CEC directive
 basic dossier, 224
 notification dossiers, 224
Cell
 culture, 201
 fractions, 201, 202
 surface, adsorption of organics on, 217
Cellulose, biodegradation of, 220, 221
Chain reactions, 126
Chamber effects, 69
C–H bonds, oxidation by peroxo radicals, 129
CH₂CO, from acetaldehyde, 73
Chemical reactivity, 287
Chemical residues, in soil, 307
Chemicals, transport, 3
Chemolithotrophic, organism, 215
Chemodynamics, 9
Chemoorganotrophic organisms, 215, 220
Chemotrophic organisms, 215
Chicken, accumulation of methyl mercury, 276
Chlordane
 clearance from *Moxostoma macrolepidotum*, 247
 metabolites *in vitro vs. in vivo*, 202
Chlordene derivatives
 cycloaddition, 86, 87
 full-cage isomers, 86, 87
Chlorinated
 aromatics, 65
 double bond, and metabolism, 197, 198
 hydrocarbons, 92, 336
 aromatic, 92
 bioconcentration factors in aquatic species, 258
 from water chlorination, 129, 130
 photomineralization of, 99
 residues, and lipid content, 238
UV spectra, in solution vs. adsorbed, 97, 98
 olefins, photomineralization of, 100
 phenols
 biodegradation of, 147
 effects of sorption on, 147
Chlorination
 degree of, and biotransformation, 198
 of water, 129, 130
Chlorine
 anthropogenic emissions, 16
 atoms, position of, and
 biotransformation, 198
 containing substances, 58
 and stratospheric ozones, 58
 induced photooxidation, 100
 molecular, in water, 130
 radicals
 from hypochlorous acid, 130
 role in photomineralization, 101, 102
 substitution
 and biochemical reactivity, 197
 and steric inhibition of
 biotransformation, 198
Chloroaniline
 (ortho), 93
 volatilization in soil, 294
Chlorobenzenes
 monosubstituted, 93, 96, 97
 photo-induced dechlorination of, 93
Chloroethane, 102
Chlorophenol (-ortho), 93, 97
Chlorophyll, in marine suspended particulates, 140
CH₂O₂, bimolecular reactions, 68
Chromatographic separation, of
 non-mineralized compound mixture, 199
Chromatography, and migration in soil, 294
Chromobacterium, 221
Chromophoric group, 97
Circulation cells,
 equatorial, 20
 time, of air across tropopause, 20
Citrobacter, 221
Clay
 minerals, and polar chemicals, 290
 sediment, particle size of, 138
 Cleavage, metabolic, of double bonds, 198
Cl₂O, from chlorine in alkaline solution, 130
Closed bottle test, 226
C:N:P ratio, optimal for microbial growth, 218
CO_2
analysers, infrared, 110
from photomineralization, 109, 110
release
tests of biodegradability in aquatic systems, 227
tests of biodegradability in soil, 228
Coagulation, 138
Codistillation, 310
Coleoptile, sections, for \textit{in vitro} studies, 201
Collander equation, 292
Co-metabolism
microbial, 216–219, 222, 225–227
of xenobiotics, 195
Comparative metabolism, 185
Compartmentalization, 338
Compartments, of the soil–plant system, 182
Complex formation, 132
Computation models, 286
Computer modelling, 69
Concentration factors, 271, 282
and size, 273, 282
in different trophic levels, 261
of metals in earthworms, 268
Condensed-phase, 83
Conduction channels, 316
Connectivity indices, molecular, 288
Constitutive enzymes, 215
Continuous films, on the sea surface, 140
Continuous input
of chemicals into soil, 177–179
steady-state concentration, 178
Conversion
coefficient, of substrate into biomass, 216
internal, 83
rates
biochemical, determination of, 200
predictability of, 203
reactions, in sediment, laboratory tests, 151, 154
Coprecipitation, of chemicals, with iron(III) oxides, 147
Correlation, structure-degradability, 85, 86
\textit{Corynebacterium}, 221
Co-solvents, in hydrolysis tests, 124
Cost limitations, 352
Costs of testing, 342
Covalent binding, of organic chemicals, to precursors of humic acid, 146
\textit{Crangon septemspinosa}, PCB accumulation, 143
Cress, 317
Criegee
intermediate, 45, 67
mechanism, 67
Crystal energy, and water solubility, 141
Cuticle, 316
penetration, 318
Cyclized
anaerobic periods, in sediments, 144
aromatic–OH–O$_2$–adducts, 72
Cycloaddition, of chlordene derivatives, 86, 87
Cyclodiene insecticides, uptake by plants from air, 318
Cytochrome oxidase, microbial, 215
DDE, 4, 98, 99
half-life in earthworms and soil, 265
in heron’s eggs, 279–281
in kestrels, 281
in livers of predatory birds, 262, 263
DDT, 98, 99
atmospheric transport of, 286
half-life in earthworms and soil, 265
in American robins, uptake from earthworms, 269, 270
in fish, uptake from food vs. water, 252
in the domestic hen, 281
reductive dechlorination of, 145
uptake and loss, in bluegills and goldfish, 249
uptake by plants from air, 318
volatilization loss, 322
Deamination photochemical, 90, 92
Dechlorination, 92
in adsorbed phase, 97
of aromatic chlorinated hydrocarbons, 92, 93
Decomposer, food chains, 258
Deforestation, 170
Degenerate state, 83
Degradation, 337, 338, 344
abiotic, 3
in aquatic systems, 122–130
by incineration, 185
by soil microorganisms, 184
INDEX

in water, 354
mechanisms
interactions of, 76
or organic acids, 73
of amines, 73
of chemicals in sediments, laboratory

tests, 152, 154–156
of sulphur-containing compounds, 73
photochemical, 185
primary, 107
secondary, 107
sequence, 75
Dehydrogenases, microbial, 215
Dehydrohalogenation, 99
Density, 132
Deposit-feeders
bioavailability of heavy metals to, 147
uptake of chemicals, laboratory tests,
150, 153
Deposit-feeding animals, 142
Deposition
dry, 75
velocity, 310, 318
Depuration, 246, 247
rates, and exposure time, 247
Desert
aerosols, 104
regions, 102
Desorption
incomplete, 291
effect of initial concentration, 290
isotherms, 311
of chemicals from sediment, 142
Detergents, 3, 336
and volatilization rates, 302
Detoxification, environmental, 196
Detritivore, food chains, recycling of
elements by, 258
Diauxetic phenomena, 219
Dicarbonyls, alpha, from xylene, 72
Dichlorobenzene (-ortho), 93, 97
Dichlorobiphenyl, hydroxy metabolites
of, 202
Dichlorodifluoromethane, 101
Dieldrin
atmospheric transport of, 286
half-life in earthworms and soil, 265
in crowned guinea fowl, 281
in heron's eggs, 279–281
livers of predatory birds, 262, 263
uptake and loss, in bluegills and
goldfish, 249
uptake by water from air, 304
Diet composition, assessment, of animals
in food web, 258
Diethylhydroxylamine (DEHA), 75
as smog inhibitor, 75
Diet vector, of xenobiotic exposure, 234
Differential, extinction techniques, 103
Diffuse reflection, 95, 96
Diffusion coefficient, 121, 301, 310
Dioxirane, 67
Direct activation, 107
Disappearance, of chemicals from soil,
179–182
Discharges, 335
Discontinuous input, of chemicals into
soil, 179–181
Dissociation, constants, 288
Dissolved chemicals, transfer to
sediments, 140
Dissolved organic carbon, test for total
biodegradability, 226, 227
Distribution, 338
coefficient, 311
mathematical equations, 3
pathways, 286
Diuron, dechlorination by
microorganisms, 146
Dodecylbenzene sulphonate,
accumulation, field test in pond,
159
Double bond, metabolism of, 197, 198
Drainage
and transport of chemicals, 174, 175
horizon, 172
Dreschel bottle, 304
Dry
deposition, 75, 314
soils, selection for actinomycetes,
220
Ductus hepaticus, metabolites in bile
from, 201
Dust particles, 94
Dusts, natural, 94
Earthworms, 262, 264–268
accumulation and loss of
organochlorines, 264, 265
residues of DDT and dieldrin, 266
uptake of pesticides through body
surface, 264
Ease of performance, 342
Ecological magnification
and octanol-water partition
coefficient, 250
and water solubility, 249
Ecological relevance, 108
of photodegradation tests, 111
Ecosphere, 112, 114, 335
Ecosystem
natural, microbial populations in, 214
studies, 202
Ecotoxicological, profile analysis, 8, 132,
185
Eddy diffusivity, coefficient, 315
EEC, status of harmonization, 347
Effects, 345
Effluent guidelines, EPR, 184
Effluents, 344
Electrochemical reduction, simulation of
anaerobic biotransformation, 145
Electron-spin resonance, 58
Elimination, rate constant of, 247–249
Emission control, legislation, 336
Emissions, 334, 344
Empedobacter, 221
Endoenzymes, 215
Energy
sources, of microorganisms, 215
transfer, 82
direct, 83
radiation free, 83
transport, in the atmosphere, 20
Enterobacteriaceae, 221
Environmental
accidents, 336
behaviour, 286
of chemicals, predictability from
tests, 203–206
chambers, 63, 75, 353
compartmentalization, 287
compartments, 112, 335, 337, 357
degradability, 340
hazard assessment, 287
relevance, of predicted
biotransformation rates, 203
Enzymatic attack, and chlorine
substitution, 198
Enzyme induction
and microbial adaption, 222
in microbial degradation tests, 184
EPA
effluent guidelines, 184
test, 354
of photodegradation, 108, 110
Epoxidation, of double bonds, 198
Erosion, of soil, 176
Erwinia, 221
Escherichia, 221
Ethane, 69, 101
Ethylene glycol, monomethyl ether, as
trapping agent, 200, 204
Eugenic, temperature range for
individual strains, 220
European Directive, on detergent
biodegradability, 224, 225
Evaporation rate, 310
and molecular weight, 310
Evapotranspiration, 182
Excitation rate, 34
Excited (O₂), 37
species, produced in air by sunlight, 20
Existing chemicals, 338
selection for testing, 340
Exoenzymes, 215
Extractability, of chemicals from soil,
correlation with bioavailability, 181
Extrapolation, from in vitro studies to
living animals, 202
Fall-out, 173
Fast phase experiments, 99
Fathead minnows, bioconcentration
factor, and octanol/water partition
coefficient, 250
Fenton’s reagent, 113
Fermentation, 215, 217
Fertilizers, 4
and soil, 173
Field
soils, spatial variability of, 172
tests
fate of chemicals in sediments, 158
of transfer between soil and water,
296
Filter
borosilicate glass, 109, 127
feeding organisms, 138
First inversion layer, 23
Fish muscle, in bioaccumulation test, 246
Flash photolysis, 57
Flavonoids, as photosensitizer, 128
Flavobacterium, 221
Floculation, 138
Flooding, 173
Flow-schemes, 344
INDEX

Flow-through tests, for accumulation in aquatic systems, 245
Fluorescence, 82
delayed, 83
Fluorocarbons, tropospheric sink, 100
Fluorochloromethanes, photolysis, 35
Flux
density, 35
through boundary layers, 297
Foliage-application, 318
Food chain
entry by uptake from sediments, 142
models
feeding studies, 273–278
mathematical, 270–273
Food vector, of xenobiotic exposure, 234
Food web, 6, 9, 258, 268–270, 316, 335, 338
Formaldehyde, 73
from photo-oxidation of methane, 73
from propene, 70
in the atmosphere
altitude dependence, 28
degradation, 28
formation from hydrocarbon oxidation, 27
lifetime, 28
photochemical oxidation, 68
reaction with OH, 73
Formic acid
anhydride, from O₃/ethene, 68
from dioxirane, 67
from formaldehyde, 68
Fossil fuel, transportation, 344
Fourier-transform
infrared spectroscopy, 64
long path, 68
Free radicals in atmosphere, 4
half-life, 5
Freons, 74, 95
influence on ozone layer, 58
photomineralization of, 100–102
Freundlich
adsorption equation, 287, 290, 291, 311, 314
equation, 141
isotherms, 84
FTIR, long path, 68
Fugacity, 286
Fujiki test, 353
of photodegradation, 109, 111
Fulvic acids, 121
as photosensitizers, 128
in sediments, polysaccharide content of, 139
Functional
biodegradation, 218
tests, 224
interdependence, 345
Fungi, in detritivore food chains, 258
Gas chromatography, 67, 110, 111
Gaseous chemicals, photodegradation, test, 111
Gas phase
controlled volatility, 305, 306
degradation, 57, 75
mass transfer coefficient, 297, 300, 301, 307
reactions, homogeneous, 20
resistance, 297
techniques, 74
Gas saturation, technique, 312
German Chemicals Act, 346
Global 2000, 119
Good Laboratory Practice, 339, 346
Goshawks, mercury accumulation, 276, 277
Gravel, particle size of, 138
Grazing food chains, 258
Ground water, pollution, 173
Growth
dilution, and elimination rates, 249
promoters, microbial, 218
regulators, and soil, 173
GSF test, of photodegradation, 108–110, 353
Habitat, 335
H-abstraction
from alkenes, 70
from toluene, 71
Half-life
free radicals in atmosphere, 5
of residue loss from soil, 315
of volatilization, 305, 306
Harmful intermediates, in photo-oxidation, 75
Harmonization, 337, 339, 343, 347
Harvest-aid chemicals, and soil, 173
Hazard assessment, 337
Hazard ranking, 8
HCO radical, from formaldehyde, 73
Heavy metals, 4, 261
bioavailability of, to deposit-feeders, 147
in kidneys, 264
in sediments, 137
Henry's Law
constant, H, 121, 122, 297, 300, 302
and molecular weight, 302
determination of, 302
HEOD, see Dieldrin
Heptachlor epoxide, half-life in earthworms and soil, 265
Herbicides, 90
Herbivore, 258
Heterogenous
phase, 95
light absorption, 94
processes, on aerosol surfaces, 20
surface effects, 94
Heterotrophic organisms, 215
Hexachlorobenzene
atmospheric transport of, 286
volatilization from water, 306
Hexachlorocyclopentadiene, 250
Hibernation, and residue mobilization, 262
Hill reaction, inhibitors, 90
H₂O₂, photolysis of, 68
Homogenous photolysis, of freons, 101
HO₂ radical
from formaldehyde, 73
interference with aerosols, 43
reactions, 43
reaction with CH₂O, 68
sources, 42
HONO photolysis of, 68
HONO/air, photolysis system, 65
Humic acids, 121, 126
and volatilization rates, 302
as photosensitizers, 128
comparison of aquatic and terrestrial, 139
in sediments, incorporation of organic chemicals, 146
Humic material, insoluble, 121
Humic substances, 108, 120
Hydration, of double bonds, 198
Hydrazines, 66
Hydrobromous acid, 130
Hydrocarbons
accumulation from sediment, 143
in atmosphere, 24
non-methane, in air, 24
transformation to toxic oxidants, 15
Hydrogen, 74
abstraction, 69, 90
by OH-radicals, 60
Hydrogenases, microbial, 215
Hydrogen Peroxide, 15
in the atmosphere
as indicator of HO₂, 30
lifetime, 29
photolysis, 29
production, 29
radical, see HO₂ radical, 42
Hydrogen sulphide
from anaerobes, 144
in sediment
and dealkylation of aminoparathion, 147, 157
and heavy metals, 146
reaction with chemicals in sediment, laboratory test, 152, 157
Hydrogen transfer, intramolecular, 90
Hydrolysis, 354
acid-catalysed, 122, 123
and linear free energy, 198
base catalysed, 122, 123
catalysed by clays, 124
in buffer solutions, 123
influence of humic substances, 124
in freshwater systems, 123
in seawater, 123, 124
metal ion catalysed, 124
of organics in water, 122-125
pH control by pH-state, 123
polar transition state, 123
salt-effect, 123
temperature dependence, 123
Hydrolysis tests
at elevated temperatures, 124
auxiliary solvents, 124
preliminary, 124
Hydrolytic stability, 124
Hydroperoxy-hydroxy-methane, 68
Hyrophobic pollutants, sorption to sediment, 141
Hydroxyl radical, see OH radicals
Hypersurfaces, potential, 83
Hypochlorous acid, 130
Hypsochromic shift, 112, 125
Immobilization, of organic chemicals, in humic acids in sediment, 146
Incineration, degradation by, 185
Indirect activation, 107
Inhibition, of microbial degradation, 216
Insecticides in brain, 264
Insolation, 21
Insoluble humic material, 121
Integration, of testing procedures, 355
Intentional release, of chemicals to the atmosphere, 75
Interfacial layers, air/water, 121
mass transfer, coefficient, 297
Interhemispherical mixing, 21
Interlaboratory comparison, 3
Intermediary metabolites, in anaerobic degradation, 217
Internal conversion, 83
Interrupt potential, and anaerobic biodegradability, 146
Intersystem crossing, 83
Intestinal bacteria, contribution to overall metabolism, 201
Intramolecular, hydrogen transfer, 90
Inventories, of existing chemicals, 339
In vitro studies, of biotransformation, 201, 202
 techniques, 356
tests, 356
In vivo studies, of biotransformation, 202
Ionic strength in freshwater, 123
in seawater, 123, 124
Ionizability, 132
Ionization potential as indicator of photochemical degradability, 103
correlation with photomineralization rate, 103, 104
Iron porphyrins, role in anaerobic reduction reactions, 145
Irrigation, 173
Isomerization, 99, 125
Isoprenes, in atmosphere, 24
Isotope dilution technique, to estimate bioavailability, 181
Japanese Chemicals Law, 346
Kasha's Golden Rule, 83
Ketones, from photo-oxidation of alkanes, 69
Kinetics equations for the determination of BCF, 245
of microbial degradation, 216
Laboratory data, for estimation of environmental behaviour, 131
Laboratory ecosystems, closed, aerated, 313, 320, 322
Laboratory tests of single factors affecting the fate of chemicals, in sediments, 148–157 of soil–water transport, 293–296
Labour-related exposure, 336
Lambert–Beer law, 95
Langmuir adsorption equation, 287, 290
equation, 141
Laser magnetic resonance, 58
Latitudinal mixing, 21
Leaching, 176 experiments, in soil columns, 289
of conversion products, 296
rates, comparative evaluation of, 184
tests, in model ecosystems, 289
through a test soil column, 184
Lead bioavailability in sediment, 143
in earthworms, 267, 268
Leaf waxes, and volatibility of chemicals, 320
Lepomis macrochirus, 249
Licensing, 339
Lifetime atmospheric, 74
tropospheric, 74
Light intensity, and biodegradation, 220
monochromatic, 86
natural, 113
scattering, 35
sources artificial, 85
characterization, 108
Lignin, biodegradation of, 220, 221
Lindane in fish, uptake from food vs. water, 252
reductive dechlorination, 145
uptake and loss, in bluegills and goldfish, 249
Linear free energy, and residues of chlorinated hydrocarbons, 238
Lipid content, and residues of chlorinated hydrocarbons, 238
Lipid fraction, chemical composition of, and partitioning pattern of xenobiotics, 247
Lipids in continuous films on the sea surface, 140
pool size and tissue retention in fish, 247
Lipophilic chemicals, in sediments, 142
Liquid film, mass transfer coefficient, 297, 300, 301
Liquid-phase controlled volatility, 305, 306
resistance, 297, 306, 307
Liquid scintillation cocktails, for CO2-trapping, 156
counting, 304
Liver perfusion, for metabolism studies, 201
Longitudinal mixing, 21
Longwell and Manieé, biodegradation test, 225
Los Angeles Basin, composition of atmosphere in, 23
Loss, non-degradation, 75
Lysimeter, 172, 185
critical depth limit, 172
tests, 289, 296, 314
Macoma balthica, and sediment-bound metals, 143
Magnesium oxide, 95
Mammalian metabolism, 8
Manmade chemicals, in sediments, 137
Mass balance in model ecosystems, 157, 158
of biotransformation processes, 195
studies, and screening methods, 196, 314, 354
Mass flow, 338
Mass of pollutant, 262
Mass spectrometer, 58, 67
coupled to reaction chamber, 67
with fast flow photoionization, 67
Mass transfer coefficient gas film, 297, 300, 301, 303
liquid film, 297, 300, 301, 303
Mass transfer resistance, overall, 297
Mathematical integration, 354
of degradation and transport rates, 131
Maximum attainable levels, in bioaccumulation, 252
half-life dependence of, 252
Mean concentration, time-weighted, of chemicals in soils, at pulsed input, 179, 180
Mecca sand, 102
Membrane barrier, 317
Membranes, bacterial, modelling of, 221
Mercury, 4, 336
adsorption of, influence of Cl-ion concentration, 142
clearance from bed sediments, by benthic macrofauna, 143
methylation, 4, 5
Mercury lamp, high-pressure, 109
Mesopause, 22
Mesosphere, 22
Metabolism and bioaccumulation, 281
of xenobiotics, 196
Metabolites intermediary, in anaerobic degradation, 217
of xenobiotics, 196
Metal concentrations, in earthworms and soil, 267, 268
Metals, sorption to Mn and Fe hydrous oxides, 141, 142
Methane as metabolic end product, 146
from anaerobes in sediment, 144
in the atmosphere, 58
photo-oxidation of, 73
reaction with OH-radical, 58
source strength, 24
tropospheric lifetime, 24
tropospheric sink of, 58
vertical distribution in atmosphere, 22
Methods criteria, 352
Methyl mercury, food chain accumulation, 276
Methyl nitrite, 65
Michaelis–Menten, kinetics of enzymic degradation, of chemicals in soil, 178
Microbial degradation, 5, 355
in sewage, 5
in surface water, 5
Microbial growth, environmental requirements, 218
Microbial inoculum, acclimatization of, 184
Microbial populations, of natural ecosystems, 214
Microbial toxicity, 344
Microbiocenosis, 214
and toxic substrates, 222
Micrococcus, 221
Microcolonies, of soil microorganisms, 214
Microcompartment, 108
Microflora, polyvalent, 221
Mie scattering, 35
Migration
and exposure to pollutants, 279
into the stratosphere, 74
of chemicals in sediment, 143
laboratory tests, 151, 154
Mineral elements, vital to microorganisms, 218
Mineral fraction
of pelitic sediment, 139
of suspended particulates, 139
Mineralization, 2, 125, 195, 314
in anaerobic conditions, 146
in plants, 318
microbial, or organic molecules, 216–218
of bound products, 207
of chemicals in aerobic sediments, 144
sorption effects on, 147
Mining wastes, and soil, 174
Mirex, loss from sediment, 153
MITI tests, 226
Mixing
interhemispherical, 21
latitudinal, 21
longitudinal, 21
Mixing ratio
gradients in atmosphere, 21
in stratosphere
of methane, 21, 22
of nitrous oxide, 21, 22
Mobility, 335, 338, 344
Mobilization
of sediment-associated chemicals, 142
by burrowing organisms, 143
Model calculations
atmosphere, 46
clean air, 47
polluted air, 47
Model chemicals, 3
Model ecosystems, 130, 131, 148, 157, 158, 185, 249, 250, 281
leaching or run-off tests, 289, 295
terrestrial-aquatic, 158
Models, for soil systems, 185
Molar mass, 286
Molecular connectivity, indices, 293
Molecular subgraphs, 293
Monitoring programmes, 286
Monochromatic light, 86, 127
Monod, law of, 216
Moxostoma macrolepidotum, clearance of chlordane from, 247
Multiplicity, 82
Municipal sludge, as source of toxic metals, 174
Mussels, in bioaccumulation testing, 246
Mutagenicity, 345
Natural
dusts, 94
light, 108
substances, with low biodegradation rates, 223
sunlight, 64
surfaces, adsorption on, 95
Nereis virens, PCB accumulation, 143
Neurotoxicity, 345
New substances, regulation, 338
Nitric oxide, 15
Nitrogen fixation, reduced by toxic oxidants, 15
Nitrogen oxides, in the atmosphere
background concentrations, 31
sinks, 31
sources, 31
Nitrous acid, in the atmosphere
formation, 30
photolysis, 30
Nitrous oxide, degradation in the stratosphere, 22, 35
vertical distribution in atmosphere, 22
N₂O, 74
NO₃
air photolysis system, 65
formation, 43
radical, 43
reactions, 44
Non-degradation loss, 75
Non-methane hydrocarbons
global emissions, 24
in atmosphere, 24
Non-tariff trade barriers, 337
NO-O₂, chemiluminescence detector, 66
Norrish mechanism, 90
Notifications, 339
Nucleophilic anions, 123
Nutrients, 120
Nutrition, sources for microorganisms, 215

O(1D), 35, 68
O₂, Δg, 36
O₂, Σg, 37
O₃, 75
Occupation density
adsorption, 95
maximum, 94
Octanol/water
partition coefficient, 183, 245, 288, 317, 343
and sediment/water partitioning, 141
as measure for bioconcentration, 249, 281

OECD
adsorption/desorption test, 160
biodegradation tests, 160
chemicals testing programme, 290, 291
screening tests, of biodegradability, 224–228
status of harmonization, 347

OH-adducts
of olefins, 69, 70
collisional deactivation, 69, 70

OH radicals, 20, 37, 66, 74, 75
addition reactions with olefins, 69, 70
as major chain carrier, 67
formation, during ozone photolysis, 26
from alkyl nitrites, 65
from formaldehyde, 38
from hydrocarbons, 39
from hypochlorous acid, 130
from nitric acid, 38
from nitrous acid, 38
from ozone, 38
in ASTM test, 113, 114
lifetimes, 40
measurement
laser fluorescence, 42
light absorption, 41
tracer methods, 40
production, 38
reaction with aldehydes, 73
reaction with aromatics, rate constants, 84
reaction with organics, 67
sink reactions, 39
tropospheric degradation by, 69
OH rate coefficient, 64
Oil channel, 316, 317
Oligochaetae, 143
Omission/substitution rules, 340
Omnidirectional flux, 35
O₂, 35, 36
O₂ atoms, 99
O(3P)-atom, 71
Optical absorption, spectroscopy, 64
Optical density, measurements, 139
Oral route, of chemical administration, in
fish biomagnification studies, 249
Organic acids, degradation mechanisms
of, 73
Organic carbon, content in soil, 290
Organic fraction, in sediments, 139
Organic matter in soil, and non-polar
chemicals, 290
Organics
coprecipitation by adsorption of
Fe(III) oxides, 142
in water, degradation, 120
mobility, 120
Organochlorines, in fatty tissue, and
starvation, hibernation, 262
Organophosphates, in sediments, 137
Osmotic pressure, and biodegradation,
218
Oxidases, microbial, 215
Oxidative cleavage, of double bonds, 198
Oxidizing species, in atmosphere, 20
Oxygen
active species, 99
as photodegradation quencher, 128
consumption in sediment zones, 144
pure, photoreactivity in, 112
Oxygen consumption, biodegradation
tests, 226
Oxygen species, 35
Oysters, lipid composition, 247
Ozone, 20
alkene gas-phase reactions, 67
damage caused by, 16
damage caused by, 20
energy absorption by, 20
ethene reaction, 67, 68
in ATSM test, 113
in background air, concentration, 25
lifetime, 25
injection from stratosphere, 26
Photochemical deamination, 90
decomposition, 4, 185
in adsorbed phase, 175, 176
degradability, in liquid phase, 85
degradation, 108
oxidation, of formaldehyde, 68
rearrangement, 86
steps, 82
Photodegradation
in adsorbed state, 17
in aquatic systems, 125–129
calculation of half-lives, 126
temperature dependence, 126
indirect, 128
of 14C labelled substance, 110, 111
primary, 125, 126
in water, 5
sensitized, 127
to CO2 and HCl, 99
Photodegradation test
in adsorbed phase, 109
in aqueous phase, 110
in double-distilled water, 127
in gas phase, 111
in water, 126, 127
light sources, 127
Photodieldrin, 97
Photodissociation, 61
of aldehydes, 73
of N2O, NO2, 68
rate, 34
Photoelectron spectroscopy, 104
Photo-induced reactions, 81
Photolysis, 32, 75
direct, 108, 112
of acetaldehyde, 73
of aldehydes, 73
of H2O2, 68
of HONO, 68
reaction, 60
absorption cross-section, 60
decomposition rate, 62
quantum yields, 60
rate constants, 61
Photomineralization, 99–104
efficiency of, 102
GSF test, 109
of chlorinated hydrocarbons, 99, 100
of freons, 100–102
rate, of freons, 102
Photon absorption, 82
Photo-oxidation, 99, 128
chlorine-induced, 100
Photophysical processes, 82
transitions, 84
Photoreactivity, of organics in aquatic systems, 108
Photosensitizers
in water, 354
natural, 128
Photostability, of organic chemicals, 104
Photosynthesis, inhibition of, 90
Phototransformations, 84
Phototrophic organisms, 215
pH requirement, for microbial activity, 218
Physico-chemical properties, 287, 296, 307
Piperylene (tr), as quencher, 89
Planetary boundary layer, 24
Plant root system, and fate of chemicals in soil, 188
Plants
and chemical residues in soil, 176, 177
uptake of chemicals from air, 317, 318
uptake of chemicals from soil, 317
Plant–soil interactions, 4
Plant–soil system, 6, 355
bioconversion of chemicals,
comparison of laboratory and outdoor tests, 204–207
biotransformation/biodegradation of chemicals in, laboratory test method, 203–207
Plasticizers, in sediments, 137
Plutonium, in Rhine river sediment, 142
Pollutant burden, of freshwater, 119
Pollutant levels in biota, influencing factors, 262
Polychaete, 143
Polychlorinated biphenyls
accumulation by Nereis virens and shrimp, from sediment, 143
in sediments, 137
Polychromatic light, 127
Polycyclic aromatic hydrocarbons, 293
aromatics, in sediments, 137
hydrocarbons, on highway dust, 84
Polyurethane foam plugs, 156, 304
Polyvalent microflora, 221
INDEX

as inoculum for biodegradability tests, 221
Ponds, for field-testing, 158, 159
Pond test, extrapolation to larger water bodies, 159
Pontoporeia hoiy, mixing of sediments by, 144
Porous Pot, biodegradation test, 225
Potential hypersurfaces, 83
Precipitation, 173
Predator, biomagnification in, 251, 282
Predatory birds, liver pollutant levels and cause of death, 262, 263
Predictability of anaerobic degradation, by electrochemical reduction, 146
of biotransformation reactions, from structural characteristics, 197, 198
of environmental behaviour, from tests, experimental requirements, 203
Prediction, of bioaccumulation, 281, 282
Premarketing data, 339
Pressure, and microbial activity, 220
Primary biodegradation, 218
nuclei, aerosols, 32
ozonide, 67
Priority lists, 8, 112, 113
Propene, photo-oxidation of, 70
Proteus, 221
Protozoa, in detritivore food chains, 258
Pseudomonadaceae, 221
Pseudomonas, 221
Pulsed input, of chemicals into soil, 179, 180
Quality assurance, 337
Quantum yield, 34, 85, 86, 103
[2 + 2]-cycloaddition of chlordene derivatives, 86, 87
data, 353
decomposition, 86, 87
isomerization, 86, 87
of degradation, 125–127
Quasidegenerate state, 83
Quencher, 88
Radioactive label, for photomineralization studies, 103
Radionuclides, 4
in sediments, 137
Radiotracer techniques for biotransformation studies, 199, 200, 205–207
for leaching and run-off studies, 294
Rain-out, 75
Raleigh scattering, 35
Ranking of bioconcentration potential, 243
of volatility, 313
Rate constant for disappearance of organics in EPA test, 110
triplet rearrangement, 89
Raw material extraction, 344
Reaction chamber, FTIR, 67, 68
Reaction rates, relative, 64
Reactive oxygen species, 4, 104, 128, 353
Reactive radicals, 113
Reactive species, 67, 108
in the troposphere, 84
on surfaces, 112
produced in air by sunlight, 20
Reaeration constant, 303
Reclamation of polluted soils, 174
of saline soils, 173
Recombination, 61
Recovery, in metabolism studies, 196
Redox potential, of sediment zones, 144
Reference compounds, 342, 352
Reference substances, in photodegradation tests, 127
Reflectance, diffuse, 95, 96
Reflection measurements, 95
specular, 96
Refractive index, 96
Refuse composting, 185
Regulatory agencies, 2
control, 336
Relative reaction rates, 64
Relaxation, vibrational, 83
Remobilization of chemicals from sediment, 142
laboratory test, 149, 153
Reproducibility, 342
Residence time, atmospheric, 113
Residual concentration, in EPA test, 111
Residual conversion products, in organisms, testing of 200-202
Residue analysis, 85
Residue losses, effects of sorption on, 147
Resistance, evolution of, 188
Resistant populations, selection of, caused by toxic carbonaceous substrate, 222
Resonance absorption, 58
Resonance fluorescence, 58
Resources, 337
Respiratory vector, of xenobiotic exposure, 234
Retention, potential, 344
Rhizosphere, 178
Ring cleavage, 72
River die-away test, 223
Root
concentration factor, 317
lipid membranes, 317
uptake from aqueous solution, 317
Rose bengal, as sensitizer for singlet oxygen formation, 128
Run-off tests, in model ecosystems, 289
Sahara sand 94
Sand, particle size of, 138
Saturation vapour pressure, relative, 311
Scattering, 96
of light, 35
Screening, 7
integrated strategies, 8
programs, 114
Seasonal changes, in prey of owls, 259, 260
Secondary processes, after OH attack, 69
Sediment, 120
accumulation of microorganisms in, 214
adsorption on, 121-126
adsorption to, particle size dependence, 141
aeration profile of, 144
chemical and biochemical processes in, 144-148
composite adsorption constant, 141
composition, 137
definition, 137
interrelationship with suspended matter, 138
non-uniform-distribution of sorbed chemicals, 141
partition coefficient and organic carbon content, 141
phosphorous release, field test, 159
standard artificial mixture, 148
stratified, in model ecosystem, 157
Sediment-bound metals
bioavailability of, 143
extractability of, 143
Sediment-dwelling animals, 142
Sediments, 108, 354
as source for redistribution, in field test ponds, 159
chemical composition of, 139
eddy diffusive mixing of, 144
erosion of, 142
field tests to study fate of chemicals in, 158, 159
in model ecosystems, 157, 158
laboratory tests of single factors in, 148-157
manmade chemicals in, 137
migration of chemicals within, 143
particle size, 138
pelitic, composition of, 139
physical properties of, 139
spatial distribution of manmade chemicals in, 140
Selection, of resistant populations, 222
Selection rules, 82
Semi-conductor oxides, 95
Sensitized photodegradation, 127
Sensitizers, 128
Settling velocity, 138
Sewage
fate of chemicals in, 8
treatment, 183
treatment plants, removal of pollutants by adsorption to biomass, 222
Sex differences, in fish bioconcentration tests, 249
Shortwave radiation, 125
Silica gel, 94, 95
as adsorbent for photomineralization, 99
photodegradation on, 109
Silty sediment, particle size of, 138
Simulated, environmental conditions, 286
Simulation
of anaerobic reactions, by
INDEX

- electrochemical reduction, 145
 of atmospheric conditions, 108, 112
- Simulation tests, of biodegradation in aquatic systems, 228
- Singlet oxygen, 121, 354
 and peroxide formation, 128
 and sulphoxide formation, 128
 in water, 128
 test for reactivity with, 128
- Singlet state, 82
 activated (S\(_2\)L), 82, 83
 ground (S\(_0\)), 82, 83
- Sink, for bioactive chemicals, 85
- Sinks, 338
- Sludge, municipal, as source of toxic metals in soil, 174
- Smog, 73
 conditions, 66
 NO\(_3\) reactions with aromatics, 66
 inhibitors, 75
- London, 15
- Los Angeles, 15
- Smog chamber, 5, 69, 108, 111, 114
- SO\(_2\), 4
- Soil
 agrochemical usage of, 173
 biodegradability in, test methods, 228
 biomass, 188
 columns, 6
 leaching experiments in, 289, 293, 294
 contamination by waste, 174
 humidity and biodegradation, 219
 incorporated chemicals, 310
 microorganisms in, 214
 models, 185
 nutrient leaching, by acid precipitation, 173
 organic carbon content, 290, 291
 pH and acid precipitation, 173
 profile, 172
 residues in, 173
 run-off
 and cover crops, 296
 microcosm test, 295
 sorbed pesticides, in aquatic systems, 140
 standard mixtures, 291
 sterilization, and disappearance rate of chemicals, 176
 structure and biodegradation, 219
- water suspensions, mineralization of chemicals by, 146
- Soils, definition, 170
- Soil-sorption, 287
 and octanol/water partition coefficient, 292
 and water solubility, 291
 coefficients, 288
 rapid test for BHC and parathion, 292
- Solar flux, 21
- Solar radiation
 attenuation by atmosphere, 20
 intensity of, 20
 ultraviolet, 109
- Solid waste, as source of soil contamination, 174
- Solubility
 in water, 132, 291
 in water and fat, and biodegradability, 223
- Sorption
 behaviour of hydrophobic pollutants, 141
 effects on mineralization, 147
 interaction with chemical processes, 146, 147
- Source strength, trace gases in air, 24
- Spatial
 distribution of manmade chemicals in sediments, 140
 variability of field soils, 172
- Specular reflection, 96
- Spin, reversal of, 83
- Spin-system change, 83
- Spoil dumps, 174
- Starvation, and residue mobilization, 262
- Static test
 accelerated procedure, 246
 for accumulation in aquatic systems, 245, 246
- Steady state
 bioconcentration factors at, 245
 concentration in soil, at continuous chemical input, 178
- Step sequence testing, 340
- Stern–Vollmer diagram, 88, 89
- Stratopause, 22
- Stratosphere, 22
- chemistry of, 75
- Streptococcus, 221
TCDD
- photomineralization of, 100
- residues of, in soils at Seveso, 174
- Technosphere, 334, 335, 338
- Tedlar bags, 64
- Teflon bag, 113
- Temperature and microbial activity, 220
- inversion, in tropopause, 20
- variation with altitude, 22
- Terpenes, in atmosphere, 24
- Terrestrial-aquatic interface, in model ecosystems, 158
- Terrestrial ecosystems, 6, 355
- Terrestrial species, pollutants in, 261–270
- Test
- animals, 337, 343
- guidelines, 345
- methods
 - predictive value of, 7
 - selection of, 6
- organisms, for accumulation studies in aquatic systems, 244
- protocols, for accumulation in aquatic organisms, 244
- Tests, field-scale, 9
- Tetrachlorodibenzo-p-dioxin (2,3,7,8), 100, 174
- Thermosphere, 22
- Thin layer chromatography, on soil layer, 184
- Thrushes, fed dieldrin-exposed worms, 275, 276
- Tiered tests, 346
- Tissue homogenate, 201, 202
- Titanium dioxide
 - catalytic effect of, 95
 - irradiation of, 129
- Toluene, photo-oxidation of, 71
- Toxaphene
 - degradation in estuarine sediments, 145
 - volatilization loss, 322
- Toxicants, formed by biotransformation, 196
- Toxicological, investigation, 340
- Toxicology, of xenobiotics, 183
- Toxic substances, 336
- control laws, 338, 346
- Toxic substrates, and the microbiocenosis, 222
Trace elements, as microbial growth promoters, 218
Trace gases, in air, 23, 25
Transfer
of chemicals between soil, air and biota, 316–323
tests, 319–323
of chemicals between soil and air, 307–316
tests, 308, 309, 312–316
of chemicals between soil and water,
tests, 288, 289, 293–296
of chemicals between water and air,
tests, 298, 299, 302–307
Transformation, 286, 335, 344
abiotic, 2
biotic, 2
Transformation reactions, microbial, 215
Transition
dipole, 82
photophysical, 84
radiation-free, 82, 83
Transitional moment, 82
Translocation, of chemicals to shoots, 316, 317
Transpiration stream, 317, 320
concentration factor, 317
Transport, 351
atmospheric, 4
chemicals, 3
global, 4
of chemicals adsorbed to soil particles, 140
within a hemisphere, 21
Transport models, 3
for chemicals in soil, 174, 175
Transport times, in the troposphere, 74
Trapping
of volatile organics and CO₂, as biotransformation/biodegradability test, 199, 200, 204
of volatilized organics, 303, 304, 312, 313, 322
Treatability tests, in model water treatment plants, 223
Trichloroethylene, volatilization from water, 305, 306
Trichlorofluoromethane, 101
Trichlorophenol degradation by bacteria, and colonizable surfaces, 147
humic acid complexes of, 147
Triplet energies, of naturally occurring sensitizers, 128
Triplet energy, 87
Triplet sensitizers, 87
Triplet state, 82, 128
Triplet state reactions, blocked by oxygen, 99
Tris-2,3-dibromo-propylphosphate, 250
Trophic indices, 188
Trophic levels, in food chains, 258, 282
Tropopause mean, 22
polar, 22
temperature inversion, 20
tropical, 22
Troposphere chemistry of, 75
composition of, 21
fate of organics in, 81
light, 94, 97
reactive species in, 81
transport times in, 75
Tropospheric degradation, by OH radicals, 69
lifetimes, 74
residence times, 102
substances, 65
Tubifex, 143
Turbulence, 301
and microbial degradation, 218
Two-film model, 296, 310
Ultimate biodegradation, 218
tests, 224
Undisturbed soil cores, 295
Unextractable residue, of chemicals in soil, bioavailability of, 181
United Nations, International Programme of Chemical Safety, 348
Universal Soil Loss Equation, US Department of Agriculture/EPA, 176
Uptake of chemicals, by water from air, 304
of pollutants, 233
Uptake rate, correlation with weight, 233
UV absorption, 132
in adsorbed phase, 95
UV light pyrex-filtered, 101
short-wave, 101
UV-radiation, solar, 109
UV spectra
in solution vs. adsorbed phase
of DDE, 98
of DDT, 98
of hexachlorobenzene, 98
of o-dichlorobenzene, 97
of o-chlorophenol, 97
of pentachlorobenzene, 98
of pentachlorophenol, 98
of photodieldrin, 98
of tetrachlorobiphenyl, 98
of substituted benzenes, 92
UV spectrophotometry, 110
UV spectrum, in water, 125
Valence delta values, 293
Validation, 342
procedure, 352
Van Karman's constant, 315
Vapour
density, 311
flux, from soil surface, 311
pressure, 132, 286, 300, 307, 310
uptake, by plants, 318
Vertical distribution
of CH₄, 22
of CO₂, 22
of N₂O, 22
Vertical flux, of chemical vapour, 315
Vertical transport, in atmosphere, 21
Vibration
evel, 82
relaxation, 83
Viscosity, 132
Volatile organics, trapping in
ethylene glycol monomethylether,
200, 204
Volatile, 184
of hydrophobic compounds, 121
Volatility from soil
field tests, 309, 314–316
laboratory tests, 308, 309, 312–314
Volatility from water, 121
field tests, 304–307
laboratory tests, 302–304, 306
Volatileization
from plants, 320–323
loss measurement, 303, 306
of chemicals from soil, 175
of particle-associated chemicals, via the
aqueous phase, 153
of pure compounds, 307
Volatileization rates
and moisture content of soil, 175
and water impurities, 302
from water, 296
Wall reactions, 113
Wash-out, 75
Waste
composting, 8
deposits, and soil, 174
incineration, 8
recycling, and soil, 174
Water
microorganisms in, 214
purification, 183
solubility, 137, 286, 288, 300, 307, 311
and accumulation in fish, 249
vector, of xenobiotic exposure, 235
Waters and Kupfer, biodegradation test, 225
Weathering of rock, 138
Wetted wall column, 304
Wickbold, biodegradability test, 225
Wick-effect, 311
Wind-speed, 301
Wind tunnels, 303
Wood mice, uptake of dieldrin and
mercury from dressed seed, 278
Xanthomonas, 221
Xenobiotic exposure, respiratory and diet
vectors, in mammals, birds and fish, 234
Xenobiotics
cometabolism of, 195
degradation in sediment, 145
mineralization in sediment, 146
Xylem, 317
Xylenes, photomineralization of, 100
Zahn–Wellens test, 227
Zenith angle, 35
Zinc
in earthworms, 267
oxide, catalytic effect, 95