Determination of Airborne Particulate Manganese by Atomic Absorption Spectrophotometry

1. INTRODUCTION

Manganese is widely distributed in nature, always in the combined state. Among the elements in the earth’s crust it ranks twelfth in abundance. The manganese mining industry does not constitute a significant source of emission to the air. Manganese compounds found in the air are generated primarily by metallurgical uses in the iron and steel industry. Most of these emissions are in the form of oxides.

In the method to be described, airborne particulates are collected by drawing the air through a filter. The filter, or an areal aliquot, with collected particulates, is digested to prepare a test sample. Preparation of this sample is simple and rapid. The aqueous acidic sample is scrutinized by an atomic absorption spectrophotometer at the wavelength 279.8nm and the manganese is calculated by referring the absorbance found to the appropriate calibration curve. By the use of a graphite furnace, additional sensitivity may be achieved beyond that of the usual flame mode. The manganese levels found are expressed in micrograms per cubic metre of air sampled. Some practical details of accuracy and precision obtainable will be found under the section “Expression of Results” (9).

2. FIELD OF APPLICATION

The method is applicable to the measurement of the levels of suspended particulate manganese found in either ambient or industrial atmospheres. Based upon the flame mode, washed glass filters and a nominal air sample volume of 2,000 cubic metres, manganese is measurable to 0.010 micrograms per cubic metre. The sensitivity is improved four times if the air sample is taken on cellulose. For the flameless mode, the sensitivity is increased only for the cellulose filters, in which case a minimum concentration of 0.0001 micrograms of manganese per cubic metre can be detected.

3. PRINCIPLE

A prepared test sample, containing the inorganic constituents in aqueous acidic solution, is atomized in a flame or graphite tube. The amount of the element of interest is measured by making use of its property of absorbing light of its characteristic wavelength in the atomic state.
4. REACTIONS

The most important reactions relate to the complete dissolution of the particulate sample in acidic media to form a homogeneous test sample. As microgram quantities of material may be involved, losses due to incomplete dissolution, volatility or adsorption must be avoided.

5. REAGENTS

5.1 *Air, compressed*
In pressure cylinders or online.

5.2 *Acetylene, compressed*
In pressure cylinders.

5.3 *Glass filters*
Commercially available material in size 203 by 254mm is exhaustively washed prior to use.

5.4 *Cellulose filters*
Ashless, acid washed, analytical grade, in size 203 by 254mm.

5.5 *Water*
Distilled at least twice from glass or quartz.

5.6 *Hydrofluoric acid*
49%. Reagent grade, in polyethylene containers.

5.7 *Nitric acid*
71%. Reagent grade.

5.8 *Standard solution of manganese*
Dissolve 3.602 grams of manganese chloride tetrahydrate, MnCl₂ · 4H₂O in dilute HCl and make up to 1 litre. 1ml contains 1,000μg per ml of manganese, Mn.
6. APPARATUS

6.1 Spectrophotometer
Atomic absorption. With meter, recorder or digital readout and monochromator with wavelength dial reading to 0.1 nanometre.

6.2 Pipettes, glass
Millilitre capacities, “to deliver”.

6.3 Volumetric flasks
Borosilicate with ground glass stopper, 25ml capacity.

6.4 Bottles, polyethylene
Screw cap, for storage of test samples, 30ml capacity.

6.5 Beakers, teflon
Griffin form, 100ml capacity.

6.6 Beakers, borosilicate
Graduated, Griffin form, with teflon coated rim, 150ml capacity.

6.7 Hot plate
Electric, with temperature control, thermostat and ceramic heating surface.

6.8 Büchner funnel
Polypropylene, custom-made, with sintered false bottom and vacuum connection, 216 by 267 by 85mm in free depth.

6.9 Graphite furnace
One suitable instrument is available commercially to the Massmann design.

6.10 Strip chart recorder
To display and record the response from the furnace.

6.11 Pipettes, automatic
Eppendorf design, with capacities 10 to 100 microlitres.
7. SAMPLING AND SAMPLES

7.1 Air Sampling

7.2 Preparation of the laboratory sample

Cellulose filters (5.4) may be used without further treatment. Glass fibre filters (5.3) are purified by placing a group of 100 such filters in the special Büchner funnel and extracting repetitively with distilled water. Mount the filter in a conventional high volume or other sampler head. Draw air through the filter at a flow rate between 1.13 and 1.60 cubic metres per minute, for an appropriate period, such as 24 hours. The resistance to flow offered by the cellulose filters is much greater than for glass and an appreciably smaller total volume of air will be taken with cellulose. Calculate and record the total volume of air sampled, in cubic metres, as the product of mean flow rate and time.

7.3 Preparation of test sample

Cut areal aliquots from the exposed surface of a filter using a circular metal punch. The cutting edge of the punch is carefully wiped with lens tissue between each use to prevent carry over of contamination from one sample to another. Place one or more such discs in a teflon beaker. Initiate the dissolution of the filter matrix by the dropwise addition of 1ml of hydrofluoric acid (5.6). Gently warm the contents of the beaker, at low heat, until the hydrofluoric acid is almost completely evaporated. At this point, add 1 to 2ml of nitric acid (5.7), and continue to heat gently until a few drops of nitric acid are left. Add about 10ml of water, bring nearly to the boil and filter through a Whatman 41 filter into a glass beaker (6.6). Transfer to a 25ml volumetric flask (6.3). Rinse down the teflon beaker with another 10ml quantity of water, warm and filter into the same beaker. Transfer to the 25ml volumetric flask and make up test sample to mark at 25°C. Mix the contents of the volumetric flask thoroughly after adjustment to volume. Transfer contents of volumetric flask to polyethylene storage bottle (6.4). The test sample is now ready for analysis. The above procedure is applicable only to the digestion of glass fibre filters. Cellulose filters may be digested or extracted with nitric acid.

8. PROCEDURE

8.1 Safety precautions

Follow normal precautions for the handling of compressed gases. Observe manufacturer's instructions on lighting and extinguishing flame. TEST GAS SUPPLY SYSTEM FOR LEAKS BEFORE USE AND EACH TIME A CYLINDER OF FUEL IS REPLACED.
8.2 **Test Portions**

8.2.1 Test portions, flame

Introduce the test portion into the flame by continuous aspiration, through polyethylene tubing, of an unmeasured portion of the test sample. Aspirate distilled water into flame, between the introduction of each test portion, to prevent cross contamination.

8.2.2 Test portions, furnace

Measure and insert in the furnace, test portions of 10 to 100 microlitres of the test sample using an automatic pipette (6.11).

8.3 **Calibration Curves**

8.3.1 Calibration curves, flame

Using “to deliver” pipettes, prepare known concentrations of manganese by dilution of standard solution (5.8) to cover the range of 0.5 to 3.0 micrograms of manganese per ml. Install in the spectrophotometer and align, if necessary, the hollow cathode source for manganese. Set the wavelength of the monochromator at 279.8nm. Using an air-acetylene flame, aspirate an unmeasured portion of each dilute standard manganese solution for 10 seconds (8.2.1). At the same time, aspirate into the flame a blank of distilled water. From the instrumental responses obtained, prepare a calibration curve of absorbance against concentration of manganese, in micrograms per ml. Such a representative calibration curve is given in Figure 1 (Page 64).

8.3.2 Calibration curves, furnace

By means of an automatic pipette with polyethylene tip, place identical microlitre volumes of the dilute standard manganese solutions and a distilled water blank in the furnace. Measure and record the response of each test portion following the predetermined measuring cycle. Cover the range of 0.2 to 1.0 nanograms of manganese in steps of 0.2 nanograms (0.01 to 0.05 micrograms per ml for a 20 microlitre sample). Prepare a calibration curve of response, in arbitrary units, against concentration of manganese in micrograms per ml. Such a representative calibration curve is given in Figure 2 (Page 65).

8.4 **Determination**

8.4.1 Determination, flame

Set the wavelength of the monochromator at 279.8nm. Observing conditions of 8.2.1 and 8.3.1, aspirate an unmeasured test portion of each unknown test sample into the flame. Record the response of each unknown.
Aspirate distilled water into the flame between each unknown test portion to prevent cross contamination. Measure the manganese in all the unknown test samples which can be accommodated to the wavelength of 279.8 nm and the corresponding calibration curve.

8.4.2 Determination, furnace
Measure into the furnace, by automatic pipette, a similar test portion of each unknown test sample. Follow the drying and heating programmes previously established. Record the response for each test portion in arbitrary units. Derive the amount of manganese present in the test sample, by referring to the appropriate calibration curve, such as, for example, Figure 2 (Page 65).

8.5 Blank Tests
8.5.1 Reagents
In parallel with preparation of calibration curves, prepare a reagent blank of the acids and distilled water used in the preparation of calibration curves and test samples. Change or purify reagents, as necessary, if blanks are unsatisfactory.

8.5.2 Reagents plus filters
In parallel with the preparation of calibration curves and test samples, prepare areal test portions from unexposed filter media as described in 7.3. Measure manganese and express blanks in micrograms of manganese per ml.

9. EXPRESSION OF RESULTS

9.1 Blank
The glass filter blank value for any element may vary considerably with the batch. This has been very noticeable with manganese and beryllium. For this reason, filter blanks should be determined regularly. It should be also noted that part of the filter blank value is due to matrix interferences from elements present in large amounts in the filter such as Na, Ba, Si, Ca, Zn, K and Al. In the case of manganese, the blank problem is much less serious with cellulose.

9.2 Instrumental precision
This is defined as the standard deviation of a number of replicate determinations, expressed in micrograms per ml. For ten repeat measurements on standard samples, the following precision has been obtained: 2.00 ± 0.01 μg/ml for the flame mode and 0.040 ± 0.00092 μg/ml for the flameless mode.
9.3 Minimum measurable

9.3.1 Concentration in test sample

This is taken as twice the blank deviation or instrument precision, whichever is larger. For the flame mode this is 0.01 micrograms per ml for cellulose filter and 0.04 micrograms per ml for glass fibre filters. The larger value for glass fibre filters is caused by the somewhat variable blank reading, which has been found to be in the range of 0.15 to 0.40 micrograms of manganese per ml; for cellulose filters the blank is zero. For the flameless mode an improvement in the minimum measurable is achieved only for cellulose filters and is 0.0004 micrograms per ml.

9.3.2 Concentrations in air

This is based on a sample volume of 2,000 cubic metres and two aliquot discs 36mm in diameter. This minimum measurable concentration is 0.010 micrograms of manganese per cubic metre with glass and 0.0025 micrograms per cubic metre with cellulose for the flame mode. The increased sensitivity of the graphite furnace reduces this to 0.0001 micrograms per cubic metre for cellulose filters.

9.4 Calculations

The manganese content of the test portion is expressed in micrograms per ml, X_1. The blank, X_2, in the same units, is subtracted from X_1 to get the corrected concentration of manganese in the test sample. Multiplication by the dilution factor, usually 25, gives the total quantity of manganese in the test sample, in micrograms. For high volume filters of nominal size 203 by 254mm:

\[
\begin{align*}
\text{Total exposed filter surface} & = 4.159 \times 10^4 \text{mm}^2 \\
\text{Areal test portion, } 2 \times 36\text{mm discs} & = 2.036 \text{mm}^2 \\
\text{Surface multiplication factor} & = 20.43 \\
\text{Dilution factor} & = 25 \\
\text{Volume of air sampled, cubic metres} & = V \\
\text{Response, unknown test portion} & = X_1 \\
\text{Response, total blank} & = X_2 \\
\text{Manganese concentration, in } \mu g/m^3 & = T \\
\end{align*}
\]

\[
T = \frac{(X_1 - X_2) \times 20.43 \times 25}{V}
\]

10. NOTES ON PROCEDURE

10.1 Collection efficiencies

Little is known about actual collection efficiencies and in methods for the
analysis of particulate metals, these efficiencies are usually ignored. The particle size of particulate manganese is almost all between 1 and 3 microns, according to Lee (12.1).

10.2 The effect of temperature and pressure during the sampling period has been largely disregarded in the past. Since these factors must have some effect on the measured air volume, it is recommended that these corrections be introduced routinely. There is increasing agreement, that if standard conditions of temperature and pressure are to be used to correct the final volume, these conditions should be 25°C and 760mm Hg.

10.3 Although the method described is nominally based upon high volume samples taken for a 24-hour sampling period, there is no valid reason why samples may not be taken for shorter time periods, at slower flow rates, or both. If high volume samples are taken on cellulose, it is particularly appropriate to take air sample volumes of 1,000 cubic metres or less. The lower particulate loading, so obtained, minimizes particulate fall-off.

10.4 It is customary to assume that the decrease in air flow rate during sampling is linear and for usual purposes of calculation, the mean value of initial and final flow rates is taken. This is not correct, although the error introduced by this oversimplification is not ordinarily serious.

10.5 For the preparation of areal test portions, the use of a sharp circular metal die is to be preferred over the use of scissors or rectilinear templates of large perimeter. Areal test portions prepared by these latter are less likely to be identical in size. A circular die, of limited diameter, machined from solid metal, is very rigid and areal aliquots can be very easily reproduced with accuracy. In the method described, a punch of stainless steel is used. No manganese contamination has been found to result from its use.

10.6 In the repetitive and consecutive areal test portions cut from an exposed high volume filter, the assumption is implicit that the element of interest is uniformly distributed across the exposed surface of the filter. This assumption is established as fact, at least in the case of lead and cadmium measured on high volume filters (12.2, 12.3, 12.4). This uniform distribution cannot be assumed in certain “membrane” type filters due to inherently high pressure drop and faulty geometry of commercially available filter holders. In the case of such filters, areal aliquotting cannot be used (12.5).

10.7 It is helpful, when it is possible, to have several calibration curves, relating to different sensitivities. This minimizes the possibility that the concentration of the metal in the unknown test sample will not match one or another of the curves. See method for lead in this series where two calibration curves are given for the flame and one for the furnace (12.6).
10.8 Operating conditions, flame

- Wavelength = 279.8 nm
- Spectral band width = 0.2 nm
- Source = Hollow cathode
- Source current = As recommended
- Oxidant = Air
- Fuel = Acetylene
- Flame = Oxidizing, lean, blue
- Sensitivity = 0.049 µg/ml for 1% absorption

Change the acetylene cylinder before the pressure drops below 50 psig.

10.9 Graphite furnace

The calibration curve for the flame mode obeys Beer's Law up to and beyond 3.0 micrograms per ml. The considerably enhanced sensitivity for manganese provided by the graphite furnace is illustrated in Figure 2. Furnace operating conditions:

- Wavelength = 279.8 nm
- Sample size = 20 µl
- Purging gas = Argon or nitrogen
- Thermal decomposition = drying (20 sec, 100°C), charring (20 sec, 1,100°C), atomizing (20 sec, 2,500°C)

The use of a deuterium lamp background compensator is recommended.

11. SCHEMATIC REPRESENTATIVE OF PROCEDURE

11.1 Draw laboratory air sample.

11.2 Cut areal test portion from exposed surface.

11.3 Digest areal test portion.

11.4 Adjust digest to volume to give test sample.

11.5 Aspirate test portion into flame.

11.6 Or, add test portion to furnace, measured by microlitre pipette.

12. REFERENCES

Manganese by A.A. Furnace

Fig. 2

Response

Sample 20 µl.

Concentration µg/ml.