Enrico Antonini

Department of Global Ecology Carnegie Institution for Science 260 Panama Street, Stanford, CA 94305 eantonini@carnegiescience.edu enricoantonini.com

GENERAL RESEARCH INTERESTS AND STRATEGY

- Primary research goals:
 - Facilitate large-scale deployment of wind power generation in future energy systems
 - > Understand the fundamental mechanisms of wind power generation from turbine to global scale
 - > Develop computational techniques to model, control and optimize fluid flows with applications to wind energy
- Primary research areas:
 - > Fluid dynamical modelling
 - ➤ Atmospheric and wind energy sciences
 - > Energy system engineering
 - > Optimization and data science

EDUCATION

Doctor of Philosophy - *University of Toronto, Toronto, Canada*

09.2014 - 09.2018

- Mechanical and Industrial Engineering
- Thesis supervisors: Prof. Cristina Amon, Dr. David Romero
- Thesis topic: CFD-based Methodology for Wind Farm Layout Optimization

Master of Science - *University of Padua, Padua, Italy*

10.2010 - 03.2013

- Mechanical Engineering (final grade: 110/110, with honours)
- Thesis supervisors: Prof. Ernesto Benini, Prof. Jens Nørkær Sørensen, Dr. Marco Raciti Castelli
- Thesis topic: Development of a Prescribed Expanding Vortex Wake Model for HAWTs

Bachelor of Science - *University of Padua, Padua, Italy*

10.2007 - 09.2010

- Mechanical Engineering (final grade: 110/110, with honours)
- Thesis supervisors: Prof. Alarico Macor, Dr. Antonio Rossetti
- Thesis topic: Optimized Management of a Power-Split Transmission for Agricultural Tractors

RESEARCH EXPERIENCE

Postdoctoral Research Scientist - Carnegie Institution for Science, Stanford, USA 03.2019 – present

- Studied the physics of wind power extraction for regional-scale wind farms
- Investigated physical parameters that control wind farm power extraction

Postdoctoral Fellow - University of Toronto, Toronto, Canada

10.2018 - 01.2019

Implemented and applied a CFD-based optimization methodology for wind farm layouts

Research Assistant - *University of Toronto, Toronto, Canada* 09.2014 - 09.2018 Developed and improved CFD wind farm models Formulated an innovative CFD-based optimization methodology for wind farm layouts **Research Engineer -** *University of Padua, Padua, Italy* 04.2013 - 08.2014 Developed BEM and vortex-wake models for vertical-axis wind turbines Applied aero-structural optimization approaches to vertical-axis wind turbines **Graduate Student -** *University of Padua, Padua, Italy* 09.2012 - 03.2013 Validated an innovative vortex-wake model for horizontal-axis wind turbines Compared and assessed different numerical models for horizontal-axis wind turbines **Exchange Student -** Technical University of Denmark, Copenhagen, Denmark 03.2012 - 08.2012 Developed state-of-the-art BEM model for horizontal-axis wind turbines Proposed an innovative vortex-wake model for horizontal-axis wind turbines **TEACHING EXPERIENCE** Guest Lecturer - University of Toronto, Toronto, Canada Wind Power Fall 2018 **Teaching Assistant -** *University of Toronto, Toronto, Canada* Fluid Mechanics I Fall 2016 Alternative Energy Systems Fall 2016, Fall 2017 Wind Power Fall 2017, Fall 2018 Thermal Energy Conversion Winter 2018 MENTORED STUDENTS **Omri Tayyara** - Master of Engineering at University of Toronto 2018 Project: CFD Modeling of After-market Rotor Attachments on Wind Turbines First position after degree: PhD student at University of Toronto **Danyal Rehman** - Bachelor of Applied Science at University of Toronto 2017 Project: Wind Farm Power Optimization using Adaptive Yaw Control First position after degree: Master/PhD student at MIT **Harmit Komal** - Master of Engineering at University of Toronto 2016 Project: Modelling Wind Turbine Wakes in Complex Terrain First position after degree: Project Engineer at Environment and Climate Change Canada

Page 2 of 6

2016

Adithya Dhoot - Master of Applied Science at University of Toronto

First position after degree: Software Engineer at Autodesk

Project: Wind Farm Layout Optimization using Probabilistic Inference

PROFESSIONAL SERVICE

Topic Editor - Sustainability, MDPI

12.2020 - present

- Providing support for the journal's Special Issues
- Promoting the journal during conferences

Member of search committee - Carnegie Institution for Science, Stanford, USA

10.2020 - present

Represented early career scientists in the search for three faculty hires

Judge for Student Presentation Award - AGU Fall Meeting, San Francisco, USA 12.2019

Judged and provided feedback on students' poster and oral presentations

Web developer - University of Toronto, Toronto, Canada

10.2016 - 01.2019

Designed and maintained the website of the research group

INDUSTRIAL EXPERIENCE

Research Engineer - Sheridan College, Oakville, Canada

10.2018 - 01.2019

- Studied the performance of innovative vertical axis wind turbine using CFD models
- Provided preliminary assessment of several improvements of the prototype model

Software Engineer - NuPhysics Consulting Ltd., Toronto, Canada

03.2016 - 04.2017

- Developed software programs and simulators for CFD applications
- Led research and development area

COMPUTER PROFICIENCY

- Scientific programming: MATLAB, Python, Fortran, C++, Java
- Computational Fluid Dynamics: OpenFOAM, Ansys Fluent, Ansys CFX, WRF
- Mechanical Design: Ansys, SolidWorks, Gambit
- Website programming and design: HTML, CSS, JavaScript, PHP

HONOURS AND AWARDS

•	Bachelor's degree cum laude (with honours)	09.2010
•	Master's degree <i>cum laude</i> (with honours)	03.2013

GRANTS, FELLOWSHIPS, AND SCHOLARSHIPS

•	Gates Ventures postdoctoral funding (US\$ 253,380)	03.2019 - 03.2023
•	Metcalfe family graduate fellowship for sustainable energy research (CA\$ 6,000)	09.2017 - 08.2018
•	Hatch graduate scholarship for sustainable energy research (CA\$ 20,000)	09.2016 - 08.2018
•	University of Toronto MIE graduate student travel grant (CA\$ 900)	11.2016
•	University of Toronto MIE graduate scholarship (CA\$ 139,843)	09.2014 - 09.2018
•	Erasmus programme scholarship (€ 1,800)	03.2012 - 08.2012

JOURNAL REFEREE

- Joule
- Energy
- Applied Energy
- Renewable Energy
- Energy Conversion and Management
- Journal of Wind Engineering & Industrial Aerodynamics
- Journal of Cleaner Production
- Wind Energy
- Energies
- Sustainability
- Journal of the Atmospheric Sciences
- TCSME
- IMECE

PROFESSIONAL MEMBERSHIPS

- Member of the American Society of Mechanical Engineers (ASME)
- Member of the American Geophysical Union (AGU)

TRAINING AND WORKSHOPS

-	How to conduct an inclusive search in STEM	2020
	Carnegie Institution for Science, Stanford, USA	
-	Lab training for measuring the performance of a two-stage air compressor	2018
	University of Toronto, Toronto, Canada	
•	Lab training for measuring head losses in pipe systems	2016
	University of Toronto, Toronto, Canada	
-	Ethics in research	2015
	University of Toronto, Toronto, Canada	

PUBLICATIONS

Journal articles

- 9. **E.G.A. Antonini**, K. Caldeira, "Spatial constraints in large-scale expansion of wind power plants", *Proceedings of the National Academy of Sciences*, Vol. 118, No. 27, p. e2103875118, 2021.
- 8. A. Dhoot, **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "Optimizing wind farms layouts for maximum energy production using probabilistic inference: Benchmarking reveals superior computational efficiency and scalability", *Energy*, Vol. 223, p. 120035, 2021.
- 7. **E.G.A. Antonini**, K. Caldeira, "Atmospheric pressure gradients and Coriolis forces provide geophysical limits to power density of large wind farms", *Applied Energy*, Vol. 281, p. 116048, 2021.
- 6. **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods", *Applied Energy*, Vol. 261, p. 114426, 2020.
- 5. **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "Improving CFD Wind Farm Simulations incorporating Wind Direction Uncertainty", *Renewable Energy*, Vol. 133, pp. 1011-1023, 2019.
- 4. **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "Continuous Adjoint Formulation for Wind Farm Layout Optimization: A 2D Implementation", *Applied Energy*, Vol. 228, pp. 2333-2345, 2018.
- 3. **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "Analysis and Modifications of Turbulence Models for Wind Turbine Wake Simulations in Atmospheric Boundary Layers", *Journal of Solar Energy Engineering*, Vol. 140, No. 3, p. 031007, 2018.

- 2. **E.G.A. Antonini**, G. Bedon, S. De Betta, L. Michelini, M. Raciti Castelli and E. Benini, "An Innovative Vortex Model for Dynamic Stall Simulations", *AIAA Journal*, Vol. 53, No. 2, pp. 479-485, 2015.
- 1. G. Bedon, E.G.A. Antonini, S. De Betta, M. Raciti Castelli and E. Benini, "Evaluation of the Different Aerodynamic Databases for Vertical Axis Wind Turbine Simulations", *Renewable & Sustainable Energy Reviews*, Vol. 40, pp. 386-399, 2014.

Refereed conference articles

- 2. **E.G.A.** Antonini, T. Ruggles, D.J. Farnham, K. Caldeira, "Meeting electricity demand with distributed wind and solar generation: System flexibility drives optimal siting", *Proceedings of the ASME International Mechanical Engineering Congress and Exposition*, IMECE2021-70678, Virtual conference, USA, 2021.
- 1. **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "Analysis and modifications of turbulence models for wind turbine wake simulations in atmospheric boundary layers", *Proceedings of the ASME International Mechanical Engineering Congress and Exposition*, IMECE2016-67353, Phoenix, AZ, USA, 2016.

Manuscripts under review or in preparation

- 2. **E.G.A. Antonini**, T. Ruggles, D.J. Farnham, K. Caldeira, "The quantity-quality transition in the value of expanding wind and solar power generation", **under review**.
- 1. D.J. Farnham, T. Ruggles, **E.G.A. Antonini**, Lewis, N., Davis, S., Caldeira, K., "Power system transition: Acknowledging uncertainty to limit regrets", **in preparation**.

PRESENTATIONS

Oral presentations

- 7. **E.G.A. Antonini**, T. Ruggles, D.J. Farnham, K. Caldeira, "Meeting US electricity demand with distributed wind and solar generation: System flexibility drives optimal siting", *ASME International Mechanical Engineering Congress and Exposition*, Virtual Conference, USA, 2021.
- 6. **E.G.A. Antonini**, K. Caldeira, "How atmospheric pressure gradients and Coriolis forces control the power density of large wind farms", *Wind Energy Science Conference*, Hannover, Germany, 2021.
- 5. **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "Computational-Fluid-Dynamics-based Methodology for Wind Farm Layout Optimization", *Seminar Series*, Carnegie Institution for Science, Stanford, CA, USA, 2018.
- 4. **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "Continuous Adjoint Formulation for Wind Farm Layout Optimization", 8th MIE Symposium, University of Toronto, Toronto, ON, Canada, 2017.
- 3. **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "Analysis and modifications of turbulence models for wind turbine wake simulations in atmospheric boundary layers", *ASME International Mechanical Engineering Congress and Exposition*, Phoenix, AZ, USA, 2016.
- 2. **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "Enhancement of CFD Wind Farm Simulations through Introduction of Wind Direction Uncertainty", 7th MIE Symposium, University of Toronto, Toronto, ON, Canada, 2016.
- 1. **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "Implementation and simulation of wind turbines with the OpenFOAM solver using the actuator disk approach", 6th MIE Symposium, University of Toronto, Toronto, ON, Canada, 2015.

Poster presentations

- 6. **E.G.A. Antonini**, K. Caldeira, "How atmospheric pressure gradients and Coriolis forces control the power density of large wind farms", *AGU Fall Meeting*, San Francisco, CA, USA, 2020.
- 5. M. Hauser, T. Ruggles, C. Henry, K. Caldeira, R. Peer, **E.G.A. Antonini**, "Cost Sensitivity of Electricity Systems to the Shape of Electricity Demand Curve: A Sub-Saharan Africa Example", *AGU Fall Meeting*, San Francisco, CA, USA, 2020.
- 4. T. Ruggles, D.J. Farnham, C. Henry, R. Peer, L. Duan, **E.G.A. Antonini**, M, Hauser, N. Lewis, J.A. Dowling, K. Rinaldi, S.J. Davis, D. Tong, K. Caldeira, "Electrofuels and curtailment of wind and solar power", *AGU Fall Meeting*, San Francisco, CA, USA, 2020.
- 3. **E.G.A. Antonini**, K. Caldeira, "Limits of electricity generation from wind: characterizing transitional scales in wind farm power density", *AGU Fall Meeting*, San Francisco, CA, USA, 2019.
- 2. O. Tayyara, **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "CFD modeling of after-market rotor attachments performance on horizontal axis wind turbines", 9th MIE Symposium, University of Toronto, Toronto, ON, Canada, 2018.
- 1. **E.G.A. Antonini**, D.A. Romero, C.H. Amon, "Continuous Adjoint Formulation for Wind Farm Layout Optimization", 9th MIE Symposium, University of Toronto, Toronto, ON, Canada, 2018.

IN THE PRESS

- How to build a better wind farm, Scienmag: Latest Science and Health News, Jun 28, 2021 [link].
- Come migliorare il rendimento dei grandi campi eolici del futuro, *QualEnergia*, Jul 05, 2021 [link].
- Optimal size for wind farms is revealed by computational study, *Physics World*, Jul 08, 2021 [link].
- L'uomo del vento: "Così si ottimizza l'eolico", La Repubblica, Jul 09, 2021 [link].
- Weatherwatch: research finds optimal size for windfarms, *The Guardian*, Jul 27, 2021 [link].
- Protecting self-driving cars from cosmic rays, size limits for wind farms, Physics World podcast, Jul 29, 2021 [link].